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Abstract

Twentieth century physics began with the shocking revolutions of quantum mechanics and
special relativity. These discoveries, which at first confounded physical understanding, were
eventually united in quantum field theory. Quantum field theory was immediately successful in
describing quantum effects in electrodynamics. We now know that it also describes the weak
and strong nuclear forces, albeit in a more complicated manner. This discovery, the Standard
Model of particle physics, unexpectedly revealed a unifying principle known as gauge symmetry.
In these notes, we will define and explain gauge symmetry in a classical setting, and show how
the gauge principle leads to physical theories. We will also explore some of the effects which
arise in quantum gauge theories.
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1 Motivation

Everyone knows at least one gauge theory: classical electromagnetism. Take a look at Maxwell’s
equations for the E and B fields:

V. -E =4np V-B=0
VXE:—la—B V x B =4rj.
c Ot

These equations can be divided into two groups. Two of them involve source terms, p and j. These
are the equations which encode the real physics. The other two are constraint equations for the
fields. These constraints can be made manifest by choosing a particular representation for the
fields. By letting

E--vo-194 p_via
c Ot
we automatically have
1_ 90A 19 10B
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V.B=V.(VxA)=0.

This representation comes with a caveat. The physical degrees of freedom are the fields E and
B; the potentials ¢ and A are not directly physical. This means that if we change ¢ and A
without changing FE and B, then we are looking at a different representation of the same physical
situation. In fact, we can make such a change of representation with ease. If we add a gradient to
A, A— A+ Vy, then E =V x A is unchanged. To fix F to be unchanged as well, we prescribe

190
¢+ ¢ — +%¢. In summary, we have
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B—Vx(A+Vx)=VxA=B.

This is called a gauge symmetry. A gauge symmetry is an internal symmetry, in which a physical
system is given a many-to-one mathematical representation. Additionally, gauge symmetries are
local, a concept we will explore in much more detail later; here, we see locality from the spacetime
dependence of the function y.

Gauge symmetry, presented in this way, is either a curiosity or a minor annoyance. We will show
first that this symmetry is made manifest in the relativistic treatment of electrodynamics, lending
a bit more credence to its importance. We will then look at the Hamiltonian formulation of
electrodynamics and its quantum mechanical consequences, showing the centrality of the scalar
and vector potentials and the significance of the gauge symmetry.



1.1 Relativistic Electrodynamics

In relativistic electrodynamics, we treat charge and current density as components of a single
four-vector, called the four-current. It is a simple exercise to show that the combination p;) in

fact forms a Lorentz vector, transforming in the appropriate way under a Lorentz transformation.
We know from electrostatics that the scalar potential satisfies V2¢ = —4mp. If we solve a similar
equation for each component of the current density, VZA = —4?” J, then we obtain a vector potential
A. The combination of the scalar and the vector potentials forms a four-vector called the four-

potential,
¢
B
At = <A :

The significance of the vector potential is not immediately clear from this definition of it. By
integrating the Poisson equation, we have

Taking the curl, we have
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which is the Biot-Savart law for the magnetic field B. In coordinates, we have
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In contrast, from electrostatics, the components of the electric field are F; = — gfi. However, since

this comes from electrostatics, it is not sensitive to terms which may arise from time dependence.
If we take a leap of faith, and prescribe that the electric field is given by
0¢p 10A4;

FE,=——-
’ ort ¢ ot’

then the electric and magnetic field components both arise as combinations of derivatives of the
four potential. In fact, if we define the tensor

FM = gAY — 9V A = 0l AV,

then the field components are exactly its components:

o E E, E.
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Clearly, this tensor — known as the field-strength tensor — contains all the variables of physical
importance. Additionally, it has a manifest symmetry. If we vary the four-potential by A*
AF 4+ OFy, then

FH s OM(AY + 0Yx) — 0V (A" + 9P) = DM AY — ¥ Al = FW.

It is simple to verify that this transformation is exactly the same as the one we defined for the
scalar and vector potentials individually, but now its covariant form is made clear.

It is worth noticing at this point that the gauge symmetry and the conservation of charge are cut
from the same cloth: the antisymmetry of the field-strength tensor. The above argument follows
because the added terms cancel, due to antisymmetry. To establish conservation of charge, we look
at the equations of motion for the fields, which are given by

47
O FM = —j".
c
If we take another derivative of this equation, then we find
8,5 = = 0,0, F" =0
4 ’
by antisymmetry. But this is the continuity equation for charge:

ap

v.i=o0.
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1.2 Hamiltonian Electrodynamics

We will now shift gears from the physics of the EM field itself to its effect on charged particles.
The Lorentz force law gives

v
F=q(E+2xB).
c
It is not obvious how to form a Lagrangian, since the Lorentz force is velocity-dependent:

qu(E—i—i;xB):q<—V¢—idA+:;V(v-A)>.

The second equality is nontrivial; you should apply cross product identities and work it out for
yourself. It turns out that the correct Lagrangian is

1
L(z, &) = 3mi” - qé() + %m LA,

To see this, we form the Euler-Lagrange equations:

d 1
pn (ma'c+ %A) +q <V¢>— CV(”'A)) =0.

Rearranging this gives the Lorentz force law as written above.



Now that we have a Lagrangian, we can construct the Hamiltonian. The canonical momentum is
oL .
P= - =mL+ T4.
oz c
The Hamiltonian is then

1
H:p-i—L:§m$2+q¢(a¢).

This seems to be missing information about the magnetic field. However, we have to express the
Hamiltonian in terms of momentum, not velocity. Making this adjustment, we have

(p—<A)?
2m

H = + qp(x).

When we quantize the particle in an electromagnetic field, we use this Hamiltonian. The Schrodinger

equation reads

[21 (—mv - %A)Z - q<z>(m)] Y(z) = EY(z).

m

Clearly there is some uncomfortable mixing of the gradient with the vector potential A. We can
remove this by defining

P(a) = eic h A ().
Substituting this in, the derivative acting on the exponential cancels the vector potential term, so
1 satisfies the normal Schrodinger equation. Thus, the effect of the vector potential is to add a

phase to the wavefunction. Typically, a phase in a wavefunction is immaterial. However, if we
$ A-dx

move the particle in a closed path, then there is a phase ehe which is nontrivial.

This phase is physical, but it also depends on the gauge-dependent quantity A. This is reconciled
by the fact that
j{ A - dx

is in fact gauge-invariant. Indeed, it is the magnetic flux through the region enclosed by the path.

Example 1.1. Show that the time-dependent Schrédinger equation of a particle in an electro-
magnetic field is gauge invariant if the gauge transformations are amended to include a phase
shift in the wavefunction.

Solution: Applying a gauge transformation to the time-dependent Schrédinger equation, we

have
h2 . q 2 1 aX ; » d i
= (7 = 2 90) s (0= (5 )| vt = (ute).

where A is some phase factor depending on the gauge function x. If the Schrodinger equation is
to be gauge invariant, we must satisfy

—inv — Ivy) et = 0,
C
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These equations are both satisfied by A = %X- Therefore, the gauge transformation takes

b(@) > ereXy(a),

in addition to the usual transformations of ¢ and A.

The observation in the previous example allows us to reformulate what we mean by the gauge sym-
metry of electromagnetism. The symmetry of adding a gradient to the four-potential is somewhat
difficult to put a finger on; exactly how much freedom does it entail? In comparison, the action of
the gauge symmetry on the wavefunction is simple: we can multiply the wavefunction by a phase
which varies from point to point in spacetime. Indeed, by shuffling constants we can write the
gauge symmetry as

D(ah) = N (at),
h
Al s AP 4 ZEgm ),
q
Written in this way, we see that after choosing a phase ¢*(#") at every point, the gauge transfor-
mation is fixed.

This is why we say that electromagnetism is a U(1) gauge theory. The group U(1), meaning the
unitary group over C!, is the group of complex phases (isomorphic to the circle group). A gauge
transformation in electromagnetism is fixed by choosing an element of U(1) at every spacetime
point.

This is a relatively simple idea; but not all groups are as simple as U(1). In the following several
sections, we will develop the theory of principal bundles, which are mathematical objects uniquely
suited to describe symmetry groups acting locally on a spacetime manifold.

Example 1.2. The idea of gauge symmetry does not apply solely to physics. A local internal
symmetry is also present in foreign exchange markets, as pointed out by [1]. Consider a discrete
collection W of points, called countries, with a function ¢ : W x W — R, called the exchange
rate. First argue that the “important” (i.e. profitable) quantities are not the values of ¢(w1, ws)
but rather the arbitrage products

P(wy, w2, ws) = ¢(wr, w2) (w2, ws)p(ws, wr).
Then show that a gauge symmetry is given by

x(w1)
x(w2)

P(wi, wz) = G(wr, wa) X

Solution: An exchange rate itself is not an important quantity. For example, at the time of
writing, ¢(USA, India) = 72.47 (meaning 1 USD = 72.47rupee); this is just a definition of one
currency in terms of the other. However, if we had three countries A, B, C, such that

¢(4, B)o(B,C)p(C, A) # 1,




then by making a triangle of currency exchanges we could create money out of thin air (i.e.,
there is potential for arbitrage).

It would make no difference to currency exchanges if every country were to make an arbitrary
rescaling of its currency. For example, if the United States started using the dime as the funda-
mental unit of currency, then we would say ¢(USA,India) = 7.247 and there would be no real
change. If every country w scales up the value of its currency by x(w), then the exchange rates

scale as
x(4)

and the arbitrage potential is manifestly unaffected.

For a fuller discussion of this concept, including the importance of time variation in the exchange
rates, see [1].

2 Manifolds and Bundles

In the last section, we described gauge symmetry as a local and internal symmetry. In the next
few sections, we will be developing mathematical machinery to handle this kind of symmetry. The
general approach will be to take a spacetime manifold, and attach to each point a full symmetry
group, so that we can choose a gauge by choosing an element of the symmetry group at each point.

2.1 DManifolds

A manifold is a generalization of familiar n-dimensional space. In R", the coordinates for a given
point are obvious; points are labeled by their coordinates. For a manifold, we allow a much more
general starting point: a topological space. A topological space is given by a set of points, X,
together with a specification of the open subsets of X, satisfying some consistency conditions.

The freedom to choose the open sets may seem unfamiliar. Typically, we are given a metric d(z,y)
on a space, and then the open sets U are ones for which, for all x € U, there exists € > 0 such that
B(z,e) C U. Intuitively, open sets are ones which do not contain their boundaries; every point is
in the interior.

This is a particular topology known as the metric topology. It is not the only topology we can
choose for a given set of points. For example, consider the discrete topology, in which all subsets of
X are open. In particular, singleton sets {z} C X are open. This would only happen in a metric
topology if d(z,y) > € for some fixed € > 0 and all y € X, meaning that = has a ball around it
containing no other points. Thus, we think of the discrete topology as the topology in which every
point is isolated.

This example shows that specifying a topology is akin to specifying the shape of a set, without
specifying its exact metric structure. Indeed, there are topologies which cannot be derived from a
metric, though we will not be especially concerned with these. Think of a topological space as a
stretchy sort of object, where only non-metric concepts like continuity make sense.



Example 2.1. A topology must satisfy the following two constraints:

(1) Any union of open sets, | J;c; U; (where I is an arbitrary index set), is open.

(2) Any finite intersection of open sets, (i, U;, is open.
Show that any metric topology satisfies these constraints.

l’EUUi,

where all the U; are open. Then there is some j € I for which x € U;. Since Uj is open, it follows
that there exists e > 0 for which B(x,€) C Uj, and it follows that B(x,€) C |J,c; Us, showing
that the union is open.

Solution: Let

el
Likewise, let
n
T € ﬂ U;.
i=1

Then x € U; for all ¢ = 1,...,n, and so there exist numbers ¢; > 0 such that B(x,¢;) C U; for
all  =1,...,n. Let e = min(ey,...,€,). Then B(z,¢) C ()., U;, showing that the intersection
is closed.

We can have functions f : X — Y from one topological space to another. A topology is sufficient
to define when a function is continuous; we say f is continuous if, whenever V' C Y is an open set,
so too is f~1(V) € X. You should show that this aligns with the typical d-¢ definition of continuity
for functions f : R — R. If there is a bijection f : X — Y between topological spaces, such that
both f and f~! are continuous, then we say f is a homeomorphism. When two topological spaces
are homeomorphic, they are the same in a topological sense.

Topological spaces are a very wide class of objects, and this class contains some unfriendly creatures.
For a topological space X to be a manifold, we have several extra demands. First, we require it to
be Hausdorff, a technical constraint on the topology which will not concern us. More importantly,
we require it to be locally homeomorphic to a Euclidean space. By locally homeomorphic, we mean
there exists an open cover {U;} (i.e., a collection of open sets U; such that U;U; = X) such that
each U; is homeomorphic to an open subset V; C R™. The functions f; : U; — V; implementing
the homeomorphisms are called a coordinate chart, and the set of all these functions is called a
coordinate atlas.

The most trivial example of a manifold is R™ itself. It forms a topological space under its metric
topology, and an open cover is given by a single open set, R™ itself. A chart on R" is simply the
identity map.

A more interesting example is the circle S as a one-dimensional manifold. We can put a topology
on the circle by first giving it a metric, under which the distance between two points is the angle
between them, and then taking the metric topology. However, there is no continuous map from



<N>
S f(z)

Figure 1: Via stereographic projection, we can map all but one point of a circle to the real line.

the circle to the real line (you should verify this by attempting to construct one), so we need to be
more creative in constructing an atlas. Let N and S be the north and south points of the circle,
and form an open cover by taking the sets {S! — N, S! —S}. We can map both of these sets to the
real line by stereographic projection, as shown in Figure 1. This defines a coordinate atlas on the
circle, giving it the structure of a manifold.

Since manifolds are locally homeomorphic to R", we can require them to inherit desired properties
of R™. For example, we almost always require a manifold to be differentiable. Note that we
cannot directly require the functions f; to be differentiable, because the domain is a topological
space, which does not have metric structure. Rather, we require the transition functions to be
differentiable. The transition functions are

fiof7 1 fUiNUy) — £(U;).

Check for yourself that f; o fl-_1 is well-defined throughout f(U; N U;). These functions describe
how to connect two different coordinate charts which lie over the same point.

Example 2.2. Show that the transition function for the coordinate atlas we defined on the
circle maps x — R?/x for some parameter R.

Solution: The transition function is defined over f;(U; N Usz), which is R — {0}. To compute
the transition function, we have to perform an inverse stereographic projection, followed by a
stereographic projection from the opposite side of the circle. This process is shown in Figure 2.

N Fa(f (@)

S T

Figure 2
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Note that the triangle between points N, S, and f; !(z) is right. Additionally, fo(f; ' (z)) o

tan /NS f~!(x), and = oc tan ZSN f~(x). These angles are complementary, so fo(f; '(z)) o
~1

xh

We can make even more stringent requirements than differentiability. A manifold is smooth if all
its transition functions are infinitely differentiable. We will require all manifolds to be smooth in
these notes.

2.2 Bundles

A bundle is relatively simple to define: it is a map « : £ — B from a manifold E to a manifold B.

There is more here than meets the eye. We call E the total space, B the base space, and 7 the
projection. Conceptually, a bundle is a manifold B to which we attach fibers, m=!(b), over each
point b € B. For example, there is the trivial bundle where F = B x F, and 7 : B X F' — B is the
canonical projection. We call F' the fiber space.

Most bundles we are interested are fiber bundles. Fiber bundles are bundles which are locally
equivalent to the trivial bundle. This is similar in nature to the requirement that a manifold be
locally homeomorphic to Euclidean space. The role of the coordinate chart is filled by the local
trivialization. The idea behind this is that, at every point x € B, there should be a neighborhood
7(x) € U C B such that 7=1(U) looks like a trivial bundle. Formally, we require that there exists
a map ¢ for which the diagram

commutes. To understand the meaning of this, follow the arrows in both ways. This says that
projecting the fibers 771 (U) down to U is equivalent to mapping the fibers under ¢ to the trivial
bundle U x F', and then projecting that bundle down to U.

Even though a fiber bundle is locally trivial, it need not be globally so. A canonical example of a
nontrivial fiber bundle is the Mobius strip. Figure 3a shows a Mébius strip, with a circle marked
out. We identify the strip with £ and the circle with B, and let m be a projection along the grid
lines down to B. The fiber space is a segment of the real line. Clearly £ 2 B x F, since B x F
would be cylindrical. However, if we take any point along B and look at a small neighborhood of
it, the Mobius strip looks like the trivial bundle in that neighborhood, which is what makes this a
fiber bundle.

A section of a bundle is a map s : B — E for which 7o s is the identity on B. This is a formal way
of saying that s maps points x € B to their fibers 7=!(z). For example, a section of a trivial bundle
E = B x F is given by a function B — F. Going backwards, any function between manifolds can
be thought of as a section of a trivial bundle.

11



(a) A Mobius strip is a fiber bundle with base (b) The tangent space T, M, where M is a sphere.
space B = S*.

Figure 3

An important example of a fiber bundle is the tangent bundle on a manifold. The tangent bundle
for a manifold M is one which associates to every point p € M its tangent space T, M. The tangent
space T, M is, intuitively, the space of tangent directions to the manifold at p. When M is an
n-dimensional real manifold, we have T,M = R". We think of the tangent space as lying on the
manifold at p, as in Figure 3b.

More precisely, the tangent space is composed of directional derivatives at p. A directional derivative
has no immediate meaning on a manifold, since it does not come equipped with a metric structure
of its own. However, via the coordinate atlas, the manifold inherits the structure of R™. That is,
given any smooth function ¢ : M — R, we have ¢ o f~1 : f(U) — R, where U is an open subset
of the manifold and f is a coordinate chart on it. Since f(U) C R", we can pick a vector v € R"
and define the directional derivative v - V(¢ o f~1). The corresponding vector in T,M is defined
abstractly as the map

vig—=v-Vipo fh.

Defined in this way, vectors are coordinate-free objects. To give them coordinates, we have to pick
a basis for T),M. This can be done by using a corresponding basis e; in R", where e; is the unit
vector in the 2 direction. We can then express a vector v as Zviei, where v* are numbers and e;
are basis vectors in T),M.

If we change the coordinates on R", we will also change the coordinates of vectors in T,,M. To see
how this works, note that e; is simply the directional derivative in the z* direction, or O Thus,

dzt
v=Y i

If we make a coordinate transformation x%(#7), then we have

0 ; 0¥l 9 ;077\ 0
v= vigg =20 — Out O :Z<Z”ami>@'

i J i

we have

(2

12



Thus, we should identify the new coordinates as
) O
i i
v = % Vi

This is exactly the transformation law we require for a contravariant vector when we define them
in terms of coordinates.

The tangent bundle ties together the tangent spaces at all points of a manifold M into a single
object, denoted T'M. A section of T'M is simply a vector field on M. This is the cleanest way to
think about vector fields on manifolds, and it is important to get comfortable with it. Put another
way, a vector field is a map from each point on a manifold to an element of the tangent space at
that point.

There is a similar construction, called the cotangent bundle. The cotangent bundle associates every
point p € M with its cotangent bundle, 77 M, defined as the dual space of T), M. (Recall that the
dual V* of a vector space V is the vector space of linear functionals on V). More concretely, an
element w € Ty M is a function T}, M — R with the properties

wlaw) = aw(v),  w(v+w)=w()+w(w).

The elements of the cotangent space can be built from functions on the manifold. Recall that
the tangent space is composed of directional derivatives. Directional derivatives act linearly on
functions, and we can turn this statement around to say that functions act linearly on directional
derivatives. Concretely, given a function f: M — R, we have an element df € T;M, where

df (v) = v(f), Vv € T,M.
We call the map f — df the differential.

A basis for TyM is given by dz', i = 1,...,n; this is true simply because these are linearly
independent (check this) and dim 7y M = dim 7, M = n. The action of dz' on a vector v is given
by dz'(v) = v(z') = v'. To write df in this basis, we use

a(w) = () = Yv'ei(p) = Y v

It follows that

as we would expect.

If we change the coordinates via a transformation z¢(#7), then we have

O i = Of [0 ) of 0z'\
df_zi:axidx T Lot |\ & oz _Z<i aﬂaﬂ) s

J
It follows that the components of df under the transformation are

(df); = Z<df>i§§;-

)
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This is the transformation law for a covariant vector.

This discussion shows that contravariant vector fields are sections of the tangent bundle T'M,
and covariant vector fields are sections of the cotangent bundle T*M. This is the coordinate-free
approach to vectors. We can use this approach to build up tensors of any rank. A tensor at a point
p of rank (r, s) is an element of

TM®- - TMT*M®---T*M.

Vv
r times s times

This coordinate-free approach to tensors has the advantage of focusing on the intrinsic structure of
the manifold, rather than being bogged down in indices.

2.3 Differential Forms

The cotangent bundle is the simplest example of a space of differential forms. For an n-dimensional
manifold, we define the spaces QP(M), for p=0,...,n, by

WPM)=T;,MN---NT;M.

p times

The wedge product A of two vector spaces V and W is defined as the vector space spanned by all
objects of the form v Aw, with v € V and w € W, where v Aw = —w Av. We call QP(M) the space
of p-forms on M.

A p-form on M is equivalent to a totally antisymmetric tensor of rank (0, p). A totally antisymmetric
tensor is fully specified if we choose its components for strictly increasing index values. For example,
if we have a totally antisymmetric tensor F' of rank (0, 2) in four dimensions, then it is specified by its

components Fyi, Foz, Fos, F12, F13, Fo3. Generalizing this argument, we see that dim QP (M) = (Z)

For example, take n = 3. The differential forms have the structure:

O-forms: f

1-forms: azdr +aydy+a.dz

2-forms: A,dx ANdy+ Aydz Ndx + Ay dy N\ dz
3-forms: Fdx Ady A dz.

We connect differential forms together via a map d : QP(M) — QPTL(M). We have already seen
the example d : Q°(M) — Q'(M), which we called the differential. It maps

To define the exterior derivative for higher p-forms, we make the following definitions: d(df) =0
for any smooth function f, and d(a A ) = (da) A B+ (—1)Pa A (dfB), where « is a p-form. These

14



two facts uniquely specify the map d. For example, we can compute the exterior derivative of a
1-form as follows:

d <Z a; dmi> = Z (d(a;) A da' + a;d(dz"))
__EE:EZ:<EZZ '>/\dxi
-y <ZZZ _ 6;?) dr’ A da?

1<J

If we specialize to three dimensions, the exterior derivative becomes recognizable. Consider its
action on 0-forms, 1-forms, and 2-forms:

3f af 3f
dy
fo ap et g, Wt g4
Oday  Oay da, Oa, Oda,  Oay
az dxr + aydy + a, dz — (695_ Gy) d:z:/\dy+<8z — 3x> dz Ndx + (83/ _8z> dy dz

Az A A,
Azdx/\dy—FAydz/\dx—FAxdy/\dzH<6 +8 y+8 >d:v/\dyAdz.

ox dy 0z

Remarkably, the exterior derivative seems to reproduce the gradient, curl, and divergence. The
only discrepancy is that the “curl” maps 1-forms to 2-forms, while we expect it to map vectors
to vectors, and the “divergence” maps 2-forms to 3-forms, when we expect it to map vectors to
scalars.

This concern is resolved by Hodge duality. Since dim QP (M) = (Z) = (nfp) = dim Q" P(M), we
can construct an isomorphism between QP(M) and Q" P(M). In the case of three dimensions,
Hodge duality relates 0-forms to 3-forms and 1-forms to 2-forms.

The exterior derivative has an important property. If we apply it twice, it is identically zero: d? = 0.
To show this, take a p-form written in Einstein notation as ail...ipdx“ A---Adx*. Then

2 i i 0aiy iy, , ; i i
d*(@iy..i,dx"™ N--- Nda') =d Tda: Adx' A - Ada'?
x

82azl “ip i i1 7
= Y e Adat Adz' A - A daP
0zt 0zI

L 2, .
S (8 Qi iy _ 0 a@”.”) dz? Adzt Adx A - A dx®

0zt0zI 0zJ Ozt
=0.

This proof shows that d?> = 0 is a consequence of Clairaut’s theorem. Specializing again to three
dimensions, we can unpack d? = 0 into the two statements V x (Vf) =0 and V - (V x v) = 0.

In addition to these differential results, multivariable calculus is centered around a few integral
theorems: the fundamental theorem of calculus, Stokes’ theorem, and the divergence theorem. In

15



the language of differential forms, we see that all of these become a single theorem, the generalized
Stokes’ theorem. The integral of a differential form is defined in R™ by

/f(ﬂj)dl’l/\"'dﬁﬂp:/f(;p)dxl...dxp.

The integral of a differential form can also be defined on a general manifold, but we will not concern
ourselves with this here.

Theorem 2.1 (Stokes’ Theorem). For a differential form w on a manifold M with boundary oM,

we have
/ dw = / dw.
M oM

We will not prove this theorem, but simply list what it says for w a 0-, 1-, or 2-form in three-
dimensional space:

/ (V) -dx = f(rg) — F(),

/(va)-dS:/ v-dx,

A 9A
/(V-v)dV: v-dS.
1% v

We thus see that the fundamental theorem of calculus, Stokes’ theorem, and the divergence theorem
are all aspects of the same result.

Mathematical aside: We know that exact forms are closed; the reverse is often true as well. For
example, in R3, closed forms are exact: if V x v = 0 then v = V f for some f, and if V-v =0
then v = V x u for some u. However, this statement does not hold for all manifolds.

We measure the failure of closed forms to be exact by the de Rham cohomology. Before defining
this, we define the cochain complex of differential forms. A cochain complex is a sequence of alge-
braic objects (more precisely, modules over rings) connected by maps, such that the composition
of any two successive maps is zero. Since d?> = 0, the spaces of differential forms clearly form a
cochain complex:

dy

C 0 —— QM) % (M) s e (M) N

PYM) — 00— -

We say a sequence of this form is exact when im d; = ker d;11; in the language of differential forms,
this sequence is exact when all closed forms are exact. The failure of closed forms to be exact is
measured by the de Rham cohomology modules

ker d,,

im dp_1

H(I;R(M) =

de Rham’s theorem asserts that the de Rham cohomology modules are isomorphic to the singular
cohomology modules. Singular cohomology is defined in terms of chains (roughly, polygonal curves
on manifolds). Intuitively, de Rham’s theorem says that the failure of closed differential forms to
be exact is related to the existence of boundariless curves on a manifold which are not themselves
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boundaries. For example, a torus has such curves, as shown in Figure 4; this means that there are
closed forms on the torus which are not exact.

71

Figure 4: A torus has two types of curves which are boundariless but not themselves boundaries.

3 Connections on Bundles

We have defined a section of a bundle 7 : F — B asamap s : B — F such that mos is the identity.
That is, a section takes points on a manifold and sends them to elements of the fiber of that point.
For example, a function f : R — R could be thought of as a section of a trivial R-bundle over R.

However, considering f as a section, we lose some information about it. We do not currently have
the tools to differentiate a section. Even though we know how to evaluate % when f is a function of
R, we cannot do the same when f is a section of an R-bundle. The reason is that a bundle consists
of separate fibers at each point; we cannot subtract elements of different fibers, so we cannot take
the limit which defines the derivative.

In order to rectify this, we will define a connection on a bundle, which gives us a way to link the
different fibers together. In this section, we will focus on vector bundles, which are fiber bundles
that have vector spaces as fibers. We will develop the idea of a connection, and its curvature, in
the context of vector bundles, before moving on to principal bundles in the next section.

3.1 Vector Bundles

A vector bundle is a fiber bundle satisfying two additional properties. First, the fibers of the bundle
must be vector spaces, which we will take to be R™ (ignoring the case of complex vector bundles
with fibers C™). Second, the local trivialization — the homeomorphism from local pieces of the
bundle to a trivial bundle — must be not only a homeomorphism, but a linear isomorphism at each
point. This endows the fibers with a linear structure, so we can talk about adding the elements of
a fiber and multiplying them by scalars.

Examples of vector bundles include the tangent and cotangent bundles. The tangent bundle for a
manifold of dimension n assigns a vector space R™ to each point of the manifold. Indeed, recall that
we constructed an element of T),M by taking a vector v € R™ and using it to define a directional
derivative at p.

Any section on a vector bundle takes values in the fiber space R™. This means that we can
decompose a section in a basis at each point. Of course, it would not be particularly helpful if we
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picked the basis at each point randomly, leading to wildly discontinuous decompositions. Instead,
we use a frame on the vector bundle. A frame is a set of sections e;, i = 1,...,n, such that at each
point p € B, the vectors e;(p) form a basis for 7=1(p).

If we have a frame for a vector bundle, then any section can be written in terms of it, via
s = s'e;,
summation notation in effect. We call s* the components of the frame s in the frame e.

There are various operations on vector spaces which generalize to vector bundles. We have already
seen one example of this: we extended the construction of a dual vector space to that of a dual
vector bundle, by taking the dual of every fiber in TM to form the cotangent bundle T*M. We
can also take two vector bundles and combine them by combining their fibers in a prescribed way.
There are two primary ways to combine two vector spaces into a vector space:

e Direct sum: given vector spaces V and W, with bases {v;}_; and {wj}gnzl respectively, the
vector space V@ W has basis {v1, ..., vp, w1,...,w,}. We have dimV@W = dim V +dim W.

e Tensor product: given vector spaces V and W, with bases {v;}"; and {w; }L, respectively,
the vector space V @ W has basis {v1 @ w1, ..., 01 @ Wiy .-, Up @ W1, ..., Vy @ Wy, . We have
dmV W =dimV x dimW.

By using these operations on the fibers of two vector bundles £ and F', we can form the direct sum
(often called the Whitney sum) E & F and the tensor product F ® F'.

Example 3.1. Let E be a vector bundle with fibers R™. Show that the tensor product £ ® E*
can be thought of as the bundle of endomorphisms of R"; that is, the bundle with fibers given
by matrices R™*",

Solution: An element of R” ® (R™)* is a linear combination of its basis elements,
a= aé- e ® e ,

where {e;}" ; is a basis for R", and e’ is its dual basis; that is, e’ is the linear functional which
sends e; to 1 and all other basis elements to 0. If we act on a vector v = v’ e; with a, we find

k

av = (aéei ® el)(vhey) = aévkéiei = (af

]Uj)ei,

which is exactly what we would get by treating a as a matrix and multiplying by v.

3.2 Connections
For a vector bundle, a section is a vector-valued function on the base space. For example, if we

have an R? vector bundle over R? (that is, the base space and the fiber space are both R?), then
sections correspond to vector fields in R3. When we see a vector field, our first instinct is to do
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calculus with it. However, we are not yet ready for this. To define a derivative of a section s, we
would need to evaluate a limit of the form

i S@+€) — s(p)

e—0 €

The notation p+ € is not precise; it indicates a point near p, with the distance from p parameterized
by e. Regardless of this, there is a bigger problem: s maps points to their fibers, so s(p + €) and
s(p) live in different fibers, i.e., different vector spaces. We do not have a way to subtract these
two vectors.

The remedy to this will be the connection on the vector bundle. The connection allows us to take
a derivative by giving us a way of identifying nearby fibers with each other. However, we will
follow this logic in the reverse order, first defining a connection as a way of taking a gradient and
then understanding the geometric ideas which result from this, primarily parallel transport and
curvature.

Our goal is to take a gradient of a section of a vector bundle FE, with base space M. We denote
the space of sections by I'(E). The gradient of a section must tell us how each component of s
changes as we move along each tangent direction, so it contains a matrix worth of information. To
make this idea explicit, take a frame e; for F, and express a section s € I'(E) as s'e;. Then Vs
needs to tell us how each component s’ changes in each direction of the tangent bundle TM. Put
another way, Vs should act as a function from T'M to the fibers of F, giving the change of s in
that direction of T'M. This function should be linear if V is a bona fide derivative.

In Example 3.1, we saw that tensoring a vector bundle with its dual gives its endomorphism bundle.
We can generalize this logic by saying that tensoring a vector bundle E with the dual of F, F™*,
corresponds to taking the bundle of linear maps from fibers of F' to fibers of F. In the present case,
we are seeking to represent an object which gives us a linear map from fibers of TM to fibers of F,
so we take E ® T*M. The connection is then a linear map

V:I(E) - T(E® T*M).

We demand one more property before we call V a connection. Ordinary derivatives obey the Leibniz
rule,

A(fg) = (0f)g + f(99g).

Connections obey a similar rule. If we take a section s and multiply it by a scalar function f, then
we must have

V(fs) = fVs+s®df,
where df is the differential (or the exterior derivative) of f.

The connection gives us all the information we need to define a derivative along a direction X, where
X e I'(T'M) is a vector field on the manifold. Indeed, this is in the definition of the connection: an
element of I'(E' ® T* M) stands ready to act on an element of I'(T'M) to give an element of I'(E).
We thus define Vxs = (Vs)X, and call this the covariant derivative along X.

The connection takes us from sections of E to sections of E ® T*M = E ® Q'(M). It is natural
to ask whether we can go one step further, and define an object which takes us from sections of
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E @ QFM to sections of E @ QF¥+1(M). This is called the exterior connection, and in fact there is
a unique exterior connection for a given connection. It satisfies a version of the Leibniz rule,

V(wAw) = (Vo) Aw + (—1)48% A (dw),

where deg v is the degree of the homogeneous form v (i.e., if v is a p-form, degv = p). Note that
this coincides with the requirement we already have when v € I'(E') and w is a 0-form (i.e., a scalar
function).

This is all very abstract; to make it more explicit, we can work in terms of coordinates. Any section
can be expressed in terms of a frame as s = s’e;; in this representation, the Leibniz rule gives

Vs =e; @ds' +5'(Ve;).
Thus, if we know how the connection acts on the frame, we can determine how it acts on any
section. Moreover, since Ve; is a section of £ ® T*M, we can decompose it into elements of the
frame weighted by one-forms w: .
Ve =¢; @ w;.
We then have an explicit formula for the connection of a section:
Vs=1¢€® ds® + siej ® wji.

This is often abbreviated by writing V = d + w; that is, applying V to a section is the same as
applying d to its components and then adding the contribution from the frame, which is encoded
by the matrix of one-forms w.

Example 3.2. In differential geometry, we are chiefly concerned with connections on the tangent
bundle T'M. Show that the covariant derivative can be written as

Vxv=0xv+ Fz-k.vak,
where Fé.k are components of the connection one-form.
Solution: We first contract Vs with X to obtain the covariant derivative:
Vxv = e;(dv'X) + ’Uiej(wjiX).

In each term, we have one-forms acting on vectors. In the first case, we can evaluate this using
the definition of the differential: dv’(X) = X (v%). Recall that X on the right hand side is acting
as a directional derivative on the function v’, so we could alternatively write this as Oxv'. For
the second term, we can use the same idea, by expressing both w’; and X in a basis:

W X = (wjikek)(Xlel) = wjile(Slk = wjika.
In total, we have obtained

Vxv = e;0x0v’ + viejwjika
=0xv+ I‘;-kvak,

where F}k = w;k is a component of the connection one-form.
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Example 3.2 shows that the connection one-form closely associated with the affine connection in
differential geometry. An important aspect of this object is its failure to transform as a tensor under
coordinate changes. This is also true of the connection one-form, which we can see by changing our
frame. Let €, be a new frame, related to the old frame by

', 9
62-—7’]1'6].

To determine the connection one-form of the new frame, we take the connection of both sides,
obtaining

Vei = V(ie;)
= ¢j @ dn] +n] Ve,
= (e, @ dipl +nl (e @ W)
= i@ ((n~"Ysdn! +nl (7 E) -
The quantity appearing in parentheses is the connection for the new frame. Treating n and w as

matrices, we can write this as w’ = 7~ 'dn+n"'wn. The second term is what we expect for a change
of basis; the first term is anomalous, since it involves dn.

As promised, we can use the connection to recover a notion of parallel transport between fibers.
This is, in fact, relatively simple. In order to have a vector undergo parallel transport along some
path v on the manifold, we wish for it not to change along ~. Thus, we require

V,v =0,

where V,, denotes the contraction of V with a vector parallel to .

3.3 Curvature

Since the connection does not transform nicely, it is explicitly dependent on a choice of frame.
Thus, it is not an object of direct geometric interest. However, we can use it to form an object
which is, called the curvature. The curvature is simply the covariant derivative of the connection:

Q) =Vuw.

Since w is a one-form, (2 is a two-form. We can write this more explicitly by expanding the covariant
derivative in terms of the connection, giving

Q=dw+wAw.

Still more explicitly, we can write this in terms of the matrix components w; as

Q) = dwj + wp AWy

Our first task is to verify the claim that this transforms tensorially. If we change to a frame e},
then we have
V=V =du + A,
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Lwn. Substituting this in, we obtain

—1.

We already have an expression for w’, namely «’ = n~tdn+n~
several simplifications using the identities d*> = 0 and dn~' = —n~ldnn

QO =d(n " dn+n" wn) + (0t + 07 wn) A (M 477 wn)
=ty Adp—ntdnn Tt Awn + 0N dwn
+ 0ty Aty + 07w A w)n + +n tdp A~ twn
=" (dw +wAw)n.

Thus, 2 transforms appropriately under a change of frame.

Example 3.3. Recall from Example 3.2 that the components of the connection form for the
tangent bundle are identified with the connection components I‘;k Expand the definition of the
curvature two-form to recover the Riemann curvature tensor,

7 _ 7 7 7 a 7 Ta
R = Okl — O, + Tho T — T, 15

Solution: We express the connection form in components by

i T k

The first term in the curvature is the exterior derivative of these one-forms, which we write as

dw; = 8l]:‘3k del A dek = (8k:F;l — alI’;k) dek AN del.

| =

The second term is

N |

Putting these together, we find that the components of the curvature two-form are the compo-
nents of the Riemann tensor, up to a factor of two.

The curvature satisfies a relation called the Bianchi identity, given by
VQ =0.
This is simple to prove; we simply substitute the definitions of 2, and find
dldw+wAw)=dvAhw—wAhdw=—(wAQ—-QAw),

and it follows that V) = 0.

3.4 Line Bundles and Electrodynamics

In the next section, we will develop the theory of principal bundles, which have fibers given by Lie
groups. This is the formalism required to treat a generic gauge theory. However, electrodynamics
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is simple enough that we can treat it using vector bundles. Formally, the gauge group of electro-
dynamics is U(1), which has the real line R as its universal cover; and so we can replace a U(1)
principal bundle with an R-bundle, which is a simple case of a vector bundle.

When a vector bundle has one-dimensional fibers, we call it a line bundle. Complex line bundles
are rich and interesting, because a complex line is really the complex plane, and we can define
holomorphic structures; but a real line bundle is somewhat trivial. Indeed, the matrices we have
been dealing with have only one component over a line bundle, and so they all commute. This
simplification results from electrodynamics being an abelian gauge theory.

These considerations aside, we can draw a correspondence between the connection and curvature
of a line bundle and the potential and field strength in electrodynamics. Since matrices become
1 x 1 on a line bundle, w and 2 only carry the indices they have as forms. Thus, we identify the
1-form w with the gauge potential A*. More precisely, we have

e
= —i—A.
w i

The factor of £ is a matter of dimensional analysis; the factor of i represents a difference between
mathematics and physics conventions for Lie algebras. It is introduced so that the gauge potential
can be real.

Given this, it follows that
QO =dw+whw=—i—dA.
hc

Since A is a 1-form, we can write
1 1
dA = d(A,d2") = 0,A,dx" dat = i(auA,, — 0,A,)dxtdz” = §Fw,d;1:“dx”.

Thus, the field strength is proportional to the curvature.

We can directly obtain two physical results from corresponding results on bundles. The first is the
phase dependence of the wavefunction as it moves through a Maxwell field. Recall that parallel
transport of 1 requires

Vi = 0.
We can write this as v g v g
@ Ny _ 9
i " <“’dt> VE G T et =0

The solution to this is

P (t) x exp <;_Li / A,mlx“) 7
2l

exactly as we obtained before using the classical notion of gauge invariance.

The second physical insight is two of the Maxwell equations. These emerge immediately as a
consequence of the Bianchi identity, which over a line bundle reads d{2 = 0. Over a contractible
space, Poincaré’s lemma says that any closed form is exact; so if we have d{2 = 0, it must be the
case that Q0 = dA for some potential A. We have already seen that writing the electric and magnetic
fields in tern;s of their potentials implies Gauss’s law for magnetism, V- B = 0, and Faraday’s law,
V xE=-95.
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4 Principal Bundles

We should take a moment to recall our goal in developing this mathematics. A gauge theory is
characterized by a local and internal symmetry, and we wish to represent such a symmetry formally.
So far, we have seen how to construct a bundle over a manifold using vector spaces as fibers, and
how to form a connection on such a bundle. In this section, we will see how to replace the vector
spaces with groups, the mathematical objects describing symmetries. A section of such a bundle is
given by choosing an element of the symmetry group at each point, in a continuous fashion, which
is exactly what we mean by choosing a gauge.

In order to make this construction formal, we will need basic elements of the theory of Lie groups,
and also their associated Lie algebras. After this legwork, we will be in a position to define principal
bundles, and show how to define a connection on them. At this point, finally, we will be able to
extract physics from these formalities.

4.1 Lie Groups

A Lie group is a mathematical object which is simultaneously a group and a differentiable manifold,
such that the group operations interact nicely with the topology of the manifold. More precisely, a
Lie group G is a manifold, together with an invertible operation G x G — G, which is continuous
with respect to the product topology of G x GG and has a continuous inverse.

The simplest example of a Lie group is the circle group U(1). The notation refers to the group of
all unitary 1 x 1 matrices, but these are just the unimodular complex numbers, which form a circle.
Clearly the product and inverse operations are continuous, so we have a Lie group.

Instead of thinking of the group structure as a function G x G — G, we can think about a map
G — End(G), where End(G) denotes the set of endomorphisms of G. Since G is a differentible
manifold, its endomorphisms are called diffeomorphisms. (This reframing from G x G — G to
G — End(G) is an example, in spirit at least, of the tensor-hom adjunction in category theory, or
currying in computer science). We denote the image of g € G under this map by Lg, and call it
the left-translation by g. (We could dually define a right-translation operator R, but there is no
need for both, so we will work only with Lg).

Recall that, whenever we have a homomorphism G — End(A) for some object A, we say G acts
on A. For example, an action of G on a vector space is a representation of G. A trivial G-
action is a homomorphism which sends every element to the identity of End(A). More complicated
representations have elements of ¢ affecting the structure of A in some way. We say an action is
free if ga = a for any a € A implies g = e, the identity of G. We say an action is transitive if, for
any ai,ae € A, there exists g € GG such that ga; = as. If an action is both free and transitive, then
G is (non-naturally) isomorphic to A as sets. To see this, fix some element a € A; then for every
a’ € A, there exists g such that ga = o/, by transitivity. If there were another element g with this
property, then we would have §~'ga = a, and so §~'g = e by freeness, so g = §. Thus, each a’ € A
defines a unique element of G, and clearly each g € G defines a unique element ga of A.

Clearly, the action G — End(G) of a Lie group on itself is free and transitive. The conclusion that
G is isomorphic to itself as a set is unsurprising; more interesting is that, if we only consider the set
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structure of the acted-upon copy of G, this isomorphism is non-natural. We can see this from the
construction: we could identify e € G with any setwise element of G. In effect, we have G acting
on a set isomorphic to itself, but without a well-defined identity element; every point is equally
well-suited to serve as the identity.

We can formalize these notions with some definitions. A homogeneous space for a Lie group G is a
smooth manifold X on which G acts transitively. For example, consider the Lie group SO(3), the
3 x 3 special orthogonal matrices. As linear transformations, these are the rotations of Euclidean
three-dimensional space. The sphere S? is a homogeneous space for SO(3), since for any two points
on the sphere, there exists a rotation which sends one to the other. However, the action is not
free, since every rotation has two fixed points along its axis. If we additionally require the G-action
on X to be free, then X is said to be a principal homogeneous space for GG, or more succinctly, a
G-torsor. We think of a G-torsor for a Lie group G as the smooth manifold underlying G, where
any point could equally well be the identity.

The most common examples of Lie groups are matrix groups. The groups GL(n,R) and GL(n,C)
are the general linear groups of dimension n over R and C, consisting of all invertible n x n
matrices under multiplication. A matrix group is a subgroup of one of these groups. Any condition
on matrices which is preserved under multiplication can be used to define a matrix group. For
example,

SL(n,k) ={M € GL(n,k) | det M = 1}
is the special linear group. It forms a subgroup since det M1 My = det M7 - det My. We also have

SO(n) = {M € SL(n,R) | MM™T =T},
SU(n) ={M € SL(n,C) | MM' = I}.

These are all of the most common matrix groups. There are also the so-called classical groups,
defined as matrices M for which MAMT = A for some fixed matrix A. For example, if we pick
A = diag(—1,1,1,1), we obtain SO(1,3), the Lorentz group.

For the sake of having a concrete example in mind, we will explore SO(3) in some detail (and, in
course, SU(2)). This is the most common Lie group appearing in basic physics, since it describes
the symmetry of Euclidean 3-space.

We first need to find its dimension as a manifold. Let S(n,R) denote symmetric matrices of size
n x n. These do not form a subgroup of GL(n,R), but nonetheless, they form a submanifold of
dimension w, as can be easily verified by counting the number of independent components of
a symmetric matrix. Now consider a map which sends M € GL(n,R) to MMT € S(n,R). The

group SO(n) is the preimage of the single point I under this map, which means

dim SO(n) = dim GL(n, R) — dim S(n, R) = ”(”2_1)

Specializing to SO(3), we see we are working with a three-dimensional manifold.

The three dimensions of SO(3) can be thought of in various ways (which correspond to various
atlases on the manifold). These ways mostly make reference to the fact that an element of SO(3)
corresponds to a rotation of three-dimensional Euclidean space. One approach is the three Euler
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Figure 5: By identifying every point on the boundary of B", we obtain S™.

angles which define a rotation, which should be familiar from classical mechanics. A similar ap-
proach, which we shall use here, is to think of a rotation in terms of an axis and an angle. For any
normal vector 7o and angle 6, we have an element R(7,6) € SO(3).

Briefly (before encountering a problem), we will consider a map R(7,0) — %ﬁ. This represents

an element of SO(3) as a point of the unit ball in three dimensions. This looks like a manifold with
boundary S2, until we realize that R(7,27) is equal to the identity element. When we identify
every point on the boundary of the unit ball B3, we obtain the three-sphere S3. If this is confusing,
think about the two-dimensional case: if we take the ball B2, and fold it up so that every point on
the boundary comes together, we obtain the sphere S2. This is shown in Figure 5.

The problem we have is that this is not the only identification we have to make. Clearly, R(7,0) is
also the identity element, so the north and south poles of our S® are identical. Moreover, we have
R(7,0) = R(—n, —0). So in fact, any two antipodal points of our S® are equivalent. The resulting
manifold, essentially S3/Z? with a Z? action defined by inversion # — —=x, is called real projective
space, and denoted RP". We have shown here that the manifold of SO(3) is RP3.

In topology, we are often interested in whether a connected space is simply connected. A simply
connected space is one for which any path from a point to itself can be continuously deformed
to a point. For example, S? is simply connected, because any closed path on the sphere can be
smoothly retracted to a point. However, the punctured plane R?\{0} is not simply connected,
because a circle wrapping around the origin cannot be deformed to a point. The manifold RP" is
not simply connected, which we can see by taking a path on S™ from a point to its antipode. This
projects to a closed path in RP™, but clearly it cannot be deformed to a point, since its endpoints
are fixed and are distinct in S™. The closed paths in a space can be organized into a group called
the fundamental group of the space; for RP™, the fundamental group is Zs (and incidentally, integer
and half-integer spin particles are classified by the representations of this group).

When a space is not simply connected, we can find a universal cover for it which is simply connected.
A covering space for a space X is a surjective map 7 : Y — X such that, for any x € X, there
exists a neighborhood U of z for which 7=(U) consists of a union of connected spaces, each of
which is homeomorphic to U. A simple example of a covering space is the plane R? as a cover for
the torus S* x S!, via the map which projects each copy of R onto R/Z =2 S'. That is, if we have a
point (x,y) € R2, the fractional parts of 2 and y specify the two angles on the torus. If we draw a
small neighborhood around any point on the torus, its inverse image is an infinite number of copies
of a small neighborhood in R?, arranged on a lattice. A universal cover is a covering space which
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is simply connected.

We have already defined RP" via a surjective map from S™. It is simple to verify that S™ is in fact
a cover for RP™, and since it is simply connected, it is the universal cover. Associated to the idea
of a cover in topology is the idea of a covering group for a topological group (in particular, a Lie
group). To define a group structure on a covering space Y for a Lie group X, we pick an identity
e* € 77 1(e). For any two elements a,b € Y, let 74,7 : [0,1] = Y be paths starting at e and ending
at a and b respectively. Then let ¢ : [0,1] — X be given by ¢(t) = (74 (t))7(7(t)) (i-e., we project
down to X, and then use the group structure on X). By the definition of a covering space Y, the
path ¢ in X lifts to several paths in Y, each starting at a different element of 7—!(e); we pick the
one starting at e*, and call its terminal point the product ab.

Using this construction on the group SO(n), by lifting the manifold to its double cover S™, we
obtain groups called Spin(n). For general n, these are distinct from any of the groups we have
mentioned thus far. However, in low dimensions, there can be accidental isomorphisms, and indeed
this happens for Spin(3). It turns out that Spin(3) = SU(2). To see this, note that unitarity
requires an element of SU(2) to have the form

a f
<_B* a*) )

and to have determinant one, we must have |a|? + |32 = 1. Writing o = a + b and 3 = ¢ + id,
this means a® + b% + ¢ + d? = 1, so we have a point of S3. It is not obvious from this alone that
SU(2) = Spin(3) as groups, but in fact this is the case.

4.2 Lie Algebras

Since a Lie group is a manifold, we can do everything with it that we could do with manifolds. In
this subsection, we will be concerned with the tangent spaces of Lie groups. We will see that the
group structure gives a natural isomorphism between all the tangent spaces on G, so it suffices to
consider only the tangent space at the identity; and moreover, that the group structure endows
this tangent space with additional structure, making it into an algebra. Before understanding this
relationship, we will look at Lie algebras in abstraction.

A Lie algebra g is a vector space, together with a product g x g — g, denoted by [-, -], which satisfies
the following properties:

e Antisymmetry: [v,w] = —[w,v]
e Linearity: [au + bv,w] = alu, w] + blv, w]

e Jacobi identity: [[u,v], w] + [[w,u],v] + [[v,w],u] =0

An ideal of a Lie algebra is a linear subspace a C g such that [g,a] C a, where

[g,a] = {[u,v] | u € g,v € a}.
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Every Lie algebra has at least two ideals, namely {0} and itself. Another important ideal (which
may coincide with {0} or g in some cases) is the center of g, defined as the maximal subspace a for
which [g, a] = {0}.

If a Lie algebra g has only the two required ideals, {0} and itself, we say g is a simple Lie algebra.
We can combine two Lie algebras by taking their direct sum g @ b as vector spaces, and defining
the product by

[91 + h1, 92 + ha] = [91, 92] + [h1, hal.

If a Lie algebra is a direct sum of simple Lie algebras, we say it is semisimple.

A homomorphism of Lie algebras ¢ : g — b, is, like any homomorphism, a map which preserves
the algebraic structure of its domain. In this case, that means ¢ must be a linear transformation
of vector spaces, and also obey the rule

¢([z,9]) = [¢(x), ¢ (y)],

where the bracket on the left belongs to g while the bracket on the right belongs to §.

A representation of a Lie algebra is a homomorphism g — gl(V'), where V' is a vector space and
gl(V) is the Lie algebra formed by taking the space of endomorphisms of that vector space, with
the commutator as a product. Put another way, a representation is a map sending elements of
the algebra to matrices, in such a way that the matrix commutator agrees with the bracket on the
original algebra.

Every Lie algebra has a canonical representation called the adjoint representation, which is defined
over the algebra itself (though only considering its vector space structure). The adjoint map sends
x € g to ad,, where ad, : g — g is defined by

adz y = [z,y].
It is clear that ad is a linear map, since
adgy+p0 W = [au + bv, w] = afu, w| + bv, w] = (aad, +bad,)w.
Additionally, it respects the bracket, since (using the Jacobi identity)
adpyy 2 = [[z,9], 2] = [z, [y, 2] — [y, [7, 2]] = (ady ad, — ady ad,)z.

Therefore, every Lie algebra has a representation with dimension equal to its own dimension, which
is an important fact.

We can use the adjoint representation to define a symmetric bilinear form on a Lie algebra, called
the Killing form. The Killing form is given by

K(z,y) = tr(ad, ady).

To understand this definition, remember that ad, and ad, are both members of gl(g), the space of
endomorphisms of the vector space of g — so in effect, they are matrices. Thus, the trace of their
product is well-defined, and is also symmetric in x and y.
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Example 4.1. The algebra sl(2, C) consists of all complex 2 x 2 matrices with trace zero, with
the bracket given by the matrix commutator. Using the basis

O B (A (i

Work out the Lie bracket, the adjoint representation, and the Killing form using this basis.

Solution: To determine the values of the Lie bracket, we simply take the matrix commutators.
We have

[h,e] = he — eh = 2e,
[, [l =hf - fh==2f,

e, fl=ef - fe=nh.
Therefore, using the ordered basis {h, e, f}, the adjoint representation is given by
00 0 0 0 1 0 -1 0
adp, =10 2 0 ade=[—-2 0 O adg=10 0 0
0 0 -2 0 0 0 2 0 0
By multiplying these in pairs, we find that the Killing form is
K(h,h) =8 K(h,e) =0 K(h,f)=0
K(e,h) =0 K(e,e) =0 K(e, f) =4
K(f,h)=0 K(f,e)= K(f,f)=0

An important fact, which we will not prove, is that a Lie algebra is semisimple if and only if its
Killing form is nondegenerate (that is, if K(z,x) = 0 implies x = 0). Thus, the previous example
shows that sl(2,C) is semisimple. In fact, sl(2,C) is simple.

It is instructive to consider the finite-dimensional representations of s[(2, C). Consider a representa-
tion sl(2, C) — gl(V). Formally we should define a Lie algebra homomorphism ¢ : sl(2,C) — gl(V),
and denote the action of x € s[(2,C) on v € V by ¢(z)v. We will abbreviate this by simply writing
zv; it will be clear from context how this is to be interpreted.

A theorem which we will not prove says that representations of a Lie algebra are completely
reducible, meaning in particular that ¢(h) is a diagonalizable matrix on V. Thus, we can split V
into eigenspaces of h:

V=V,ao -V,
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f f f f
Figure 6: An irreducible representation of sl(2, C).

where v € V), means hv = Av. Now, since [h, €] = 2e, we have
veEVy = hev=([h,e]+eh)v=(\+2)ev,

so ev € Vi o. Similarly, fv € V\_o. Since V is finite-dimensional, ¢(h) can only have a finite
number of eigenvalues, this chain of eigenspaces must stop somewhere; that is, we can find A\ such
that eV = 0. Now, let vg € V), and let v; = f7vg. Then v; € Vy_g; the action of f is moving
us down a chain. If we want to move back up, we should act with e. To determine this, we need
[e, f™]; it can be shown by induction that

e, f"] =nf"" (h+1—n).

Using this, we find ‘ '
evj =eflvg = e, flvg =j( A+ 1 — j)vj_1.

Again, since V is finite dimensional, there must be some level N at which vy;1 = 0. Let N be the
lowest possible value, so that vy #% 0. Then

0=evnt1 = (N + 1)()\ — N)UN.

Therefore, N = X. This means A is an integer, and that the eigenvalue of vy is A — 2N = —N, so
there is a symmetry to the tower we have found, shown in Figure 6.

Consider the subspace of V' spanned by {vo,...,vn}. By construction, if we act with h, e, or f,
we remain in this subspace. We call such a subspace an invariant subspace. We have just shown
that for any representation sl(2,C) — gl(V), the invariant subspaces look like Figure 6.

If a representation has invariant subspaces, it is said to be reducible. If we have a reducible repre-
sentation, we can decompose the vector space into a direct sum of its invariant subspaces. Thus,
the interesting representations are the ones which form the smallest pieces of this decomposition;
they are the irreducible representations. An irreducible representation has no invariant subspaces
other than {0} and the entire vector space. For s[(2,C), we have just shown that the irreducible
representations are labeled by an integer N, and have dimension 2N + 1.

We can generalize much of this analysis to arbitrary simple Lie algebras g. Our classification of
the sl(2,C) representations was driven by the eigendecomposition of h; this is because {h} forms
a Cartan subalgebra of s[(2,C). A Cartan subalgebra h C g is a subalgebra satisfying [h,h] = 0
(i.e., an abelian subalgebra), such that for any H € b, ady is diagonalizable. A theorem we will
not prove states that, for simple Lie algebras, Cartan subalgebras exist and they all have the same
dimension. The dimension of the Cartan subalgebra is called the rank of g.

Thus, given a simple Lie algebra g with rank r, let h C g be a Cartan subalgebra, and let
{H1,...,H;} be a basis for it. By hypothesis, all of ady, are diagonalizable; moreover, since
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(a) The root system of the Lie algebra su(3).
(b) The “eightfold way,” a depiction of meson

bound states in quantum chromodynamics.

Figure 7

[H;, H;] = 0, ady, commutes with ady, for any representation ¢. A simple exercise in linear alge-
bra shows that if two matrices are diagonalizable and they commute, one can find a basis in which
they are simultaneously diagonalizable. Thus, we can decompose g into a direct sum of spaces g,
where o« € C" are vectors such that

VE Py = adyg,v=0ov, i=1,...,7.

The vectors a occurring in this decomposition are called the roots of g, and g, is called the root
spaces.

We can verify some simple properties of roots and root spaces. First, note that 0 is always a root,
and its root space g is simply the Cartan subalgebra h. Additionally, if we take v € g, and w € gg,
then

ade‘ [v7 w] = [Hi’ [U’ w]] = [[Hh U]v w] + [U7 [Hi’ wH = (ai + Bi)[va w]v

S0 [gaagﬁ] C ga+8-

As an example, very much non-randomly chosen, we will consider the root system of the simple
Lie algebra su(3). This is an eight-dimensional Lie algebra with rank 2, so its roots can be drawn
in the plane. The root 0 corresponds to the Cartan subalgebra with two generators; there are six
more dimensions of the Lie algebra which must be broken down into root spaces. It turns out that
all of the remaining root spaces are one-dimensional, and their roots form the vertices of a hexagon
(with the exact geometry depending on a choice of basis for the Cartan subalgebra). This is shown
in Figure 7a.

Some foreshadowing is in order. The Lie group SU(3), which is associated with su(3) by a construc-
tion which will follow shortly, describes a symmetry of quark flavors in quantum chromodynamics.
The strong nuclear force acts in the same way on all quark flavors, so as long as two quarks have
small mass compared to the QCD energy scale (which is true of the quarks u, d, and s), they can
be substituted for one another without significant alterations to the physics. This gives rise to an
SU(3) symmetry of rotations in the Hilbert space spanned by these three flavors. A brief glance at
Figure 7b, showing mesons laid out according to their charge and strangeness, should convince you
that this SU(3) symmetry is very much active in determining the spectrum of QCD bound states.
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For noticing this structure, and for predicting a missing particle in a related baryon structure,
Murray Gell-Mann won the Nobel Prize in 1969.

Finally, we will describe how a Lie group gives rise to a Lie algebra. Recall that for a Lie group g,
we have diffeomorphisms L, : G — G associated to every point g € G. This means in particular
that for any two points g, ¢’ € G, there is a canonical diffeomorphism L g-1 which sends g to q.

We can use this diffeomorphism to relate the tangent spaces TyG and TjyGG. Recall that the tangent
space T, M was abstractly defined as the set of all maps

CHM) 3 ¢ v-V(po [ 1) €R,

where f is a coordinate chart on M mapping a neighborhood U > p to an open subset of R™.
Intuitively, these are the directional derivatives at p. If we have a diffeomorphism ¢ : M — N,
with ¢(p) = ¢, then we can define a pushforward map ¢, : T,M — T;N by

¢4(v) = [CH(N) 3 ¥ = v(¥ 0 9)].

That is, to evaluate the vector ¢,(v) on a function ¢ defined on M, we first compose 1 with ¢ so
that we have a function on M, and then evaluate v on that function.

The important point here is not the exact construction of the pushforward, but what it means: for
a Lie group, since we have the family of diffeomorphisms L4, we have a linear map between any two
tangent spaces; and moreover, the maps between T,G and TG are inverses of each other. This
means that all the tangent spaces of a Lie group are naturally isomorphic, so we are free to focus
on only one of them. For simplicity, we focus on T, G, the tangent space at the identity.

We know that T.G has the structure of a vector space; to endow it with the structure of a Lie algebra,
all we need to do is define the bracket [-,-]. Since the elements of T, G are tangent directions, there
is a simple way to define [v,w]: take the identity, move it in the direction w, then the direction
v. Alternatively, move it in the direction v, then the direction w. The bracket [v,w] gives the
difference in the results.

To make this idea formal, we first introduce the concept of a left-invariant vector field. A left-
invariant vector field on a Lie group G is a vector field X for which

(Lg)*X(g,) = X(gg,).

Clearly any left-invariant field defines an element X (e) € T.G; and likewise, if we fix X (e) € T.G,
then X (g) is fixed by the definition for all g. Thus, T.G is isomorphic to the set of left-invariant
vector fields.

Now we can define the Lie bracket. For two vectors v,w € T.G, we build the corresponding left-
invariant vector fields V, W. Given a smooth function f on the group, a vector field can act on f
to produce another smooth function V(f), via (V(f))(p) = (V(p))(f) — that is, the value of V'(f)
at a point is given by acting on f with the vector V' (p). We tentatively define

[v,w] = (VW —WV)(e).

In order for this definition to make sense, we need to verify several facts. First, in order to associate
a vector in T,G with the vector field VIW — WV we need to check that VW — WV is left-invariant.
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Since V and W are both left-invariant, this is immediate. Additionally, antisymmetry and linearity
are immediate. To check the Jacobi identity, we simply compute:

[u, [v, w]] + [w, [u,v]] + [v, [w,u]] =UVW = WV) = (VW - WV)U + WUV - VU)
UV — VU)W + V(WU — UW) — (WU — UW)V
= 0.

Thus, our bracket satisfies the conditions for making 7. G into a Lie algebra.

Now that we have seen how to go from a Lie group to a Lie algebra, we might wonder how to go
from an algebra to a group. There is a relatively clear answer: starting from a vector v € T, G, we
build the left-invariant vector field V' on the manifold G. From here, we can define a one-parameter
subgroup of G by solving the differential equation

oy

T V(ov(t));

the solution ¢ : R — G will be a group homomorphism. Finally, we define the exponential map
exp : T.G — G by v — ¢y(1). Intuitively, all this means is that we take a vector v € T.G and
“move in the v direction” for a bit to reach exp(v) € G.

When we have a matrix group, the exponential map can be made much more concrete: it reduces
to the standard exponential map of matrices. This gives a quick and dirty way of understanding
what the Lie algebra associated to a matrix Lie group ought to be. For example, for the special
linear group SL(n,C), defined to be n x n complex matrices with determinant 1, a matrix A in the
associated Lie algebra must satisfy dete4 = 1. But for any matrix A, dete? = "4, so in fact we
need tr A = 0. This is why we said the algebra s[(2, C) consists of complex 2 x 2 traceless matrices.
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